May 30, 2024 /SemiMedia/ -- Infineon Technologies AG recently announced two new generations of high voltage (HV) and medium voltage (MV) CoolGaN TM devices which now enable customers to use Gallium Nitride (GaN) in voltage classes from 40 V to 700 V in a broader array of applications that help drive digitalization and decarbonization. These two product families are manufactured on high performance 8-inch in-house foundry processes in Kulim (Malaysia) and Villach (Austria). With this, Infineon expands its CoolGaN advantages and capacity to ensure a robust supply chain in the GaN devices market, which is estimated to grow with an average annual growth rate (CAGR) of 46 percent over the next five years according to Yole Group.
“Today’s announcement builds nicely on our acquisition of GaN Systems last year and brings to market a whole new level of efficiency and performance for our customers,” said Adam White, Division President of Power & Sensor Systems at Infineon. “The new generations of our Infineon CoolGaN family in high and medium voltage demonstrate our product advantages and are manufactured entirely on 8 inch, demonstrating the fast scalability of GaN to larger wafer diameters. I am excited to see all of the disruptive applications our customers unleash with these new generations of GaN.”
The new 650 V G5 family addresses applications in consumer, data center, industrial and solar. These products are the next generation of GIT-based high voltage products from Infineon. The second new family manufactured on the 8-inch process is the medium voltage G3 devices which include CoolGaN Transistor voltage classes 60 V, 80 V, 100 V and 120 V; and 40 V bidirectional switch (BDS) devices. The medium voltage G3 products are targeted at motor drive, telecom, data center, solar and consumer applications.
The CoolGaN 650 V G5 will be available in Q4 2024 and the medium voltage CoolGaN G3 will be available in Q3 2024. Samples are available now. For more information, please visit https://www.infineon.com/cms/en/product/power/gan-hemt-gallium-nitride-transistor/.
All Comments (0)